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Summary

Hundreds, if not thousands, of uncharacterized en-
zymes currently populate the human proteome.

Assembly of these proteins into the metabolic and sig-
naling pathways that govern cell physiology and pa-

thology constitutes a grand experimental challenge.
Here, we address this problem by using a multidimen-

sional profiling strategy that combines activity-based
proteomics and metabolomics. This approach deter-

mined that KIAA1363, an uncharacterized enzyme
highly elevated in aggressive cancer cells, serves

as a central node in an ether lipid signaling network
that bridges platelet-activating factor and lysophos-

phatidic acid. Biochemical studies confirmed that
KIAA1363 regulates this pathway by hydrolyzing the

metabolic intermediate 2-acetyl monoalkylglycerol. In-
activation of KIAA1363 disrupted ether lipid metabo-

lism in cancer cells and impaired cell migration and

tumor growth in vivo. The integrated molecular profil-
ing method described herein should facilitate the func-

tional annotation of metabolic enzymes in any living
system.

Introduction

Elucidation of the metabolic and signaling networks that
regulate health and disease stands as a principal goal
of postgenomic research. The remarkable complexity
of these molecular pathways has inspired the advance-
ment of ‘‘systems biology’’ methods for their character-
ization [1]. Toward this end, global profiling technologies,
such as DNA microarrays [2, 3] and mass spectrometry
(MS)-based proteomics [4, 5], have succeeded in gener-
ating gene and protein signatures that depict key fea-
tures of many human diseases. However, extricating
from these associative relationships the roles that spe-
cific biomolecules play in cell physiology and pathology
remains problematic, especially for proteins of unknown
biochemical or cellular function.

The functions of certain proteins, such as adaptor or
scaffolding proteins, can be gleaned from large-scale
protein-interaction maps generated by technologies
like yeast two-hybrid [6, 7], protein microarrays [8], and
MS analysis of immunoprecipitated protein complexes
[9, 10]. In contrast, enzymes contribute to biological pro-
cesses principally through catalysis. Thus, elucidation
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of the activities of the many thousands of enzymes en-
coded by eukaryotic and prokaryotic genomes requires
knowledge of their endogenous substrates and prod-
ucts. The functional annotation of enzymes in prokary-
otic systems has been facilitated by the clever analysis
of gene clusters or operons [11, 12], which correspond
to sets of genes adjacently located in the genome that
encode for enzymes participating in the same metabolic
cascade. The assembly of eukaryotic enzymes into met-
abolic pathways is more problematic, however, as their
corresponding genes are not, in general, physically orga-
nized into operons, but rather are scattered randomly
throughout the genome.

Given the absence of a functional architecture con-
necting eukaryotic genomes and proteomes, the activi-
ties of their enzyme constituents are typically assessed
in an empirical manner in vitro by using candidate sub-
strates and purified preparations of protein. The out-
come of these ‘‘test-tube’’ biochemistry studies can be
difficult to translate into a clear understanding of the
roles that enzymes play in living systems, where these
proteins are subjected to posttranslational regulation
[13] and typically operate as parts of larger metabolic
networks [14]. We hypothesized that the determination
of endogenous catalytic activities for uncharacterized
enzymes could be accomplished directly in living sys-
tems by the integrated application of global profiling
technologies that survey both the enzymatic proteome
and its primary biochemical output (i.e., the metabo-
lome). Here, we have tested this premise by utilizing
multidimensional profiling to characterize an integral
membrane enzyme of unknown function that is highly
elevated in human cancer.

Results

Development of a Selective Inhibitor for the
Uncharacterized Enzyme KIAA1363

Previous studies using the chemical proteomic technol-
ogy activity-based protein profiling (ABPP) [15–17] have
identified enzyme activity signatures that distinguish
human cancer cells based on their biological properties,
including tumor of origin and state of invasiveness [18].
A primary component of these signatures was the pro-
tein KIAA1363, an uncharacterized integral membrane
hydrolase found to be upregulated in aggressive cancer
cells from multiple tissues of origin. Since that time, the
mouse ortholog of KIAA1363 has been found to repre-
sent a major site of labeling for organophosphorus nerve
agents in brain tissue [19]; however, the endogenous
metabolic function(s) of this enzyme in mammalian
physiology and pathology remains unknown. To investi-
gate the role that KIAA1363 plays in cancer cell metabo-
lism and signaling, a selective inhibitor of this enzyme
was generated by competitive ABPP [20, 21].

Key advantages of competitive ABPP include that
it can be performed in native proteomes and used to
identify inhibitors for enzymes that, like KIAA1363, lack
known substrates. Moreover, because inhibitors are
screened against many enzymes in parallel, both
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Figure 1. Characterization of AS115, a Selec-

tive Inhibitor of the Cancer-Related Enzyme

KIAA1363

(A) Structure of AS115.

(B) Effects of AS115 on the membrane (left

image) and soluble (right image) serine

hydrolase activity profiles of SKOV-3 cells,

as judged by competitive ABPP with a rhoda-

mine-tagged FP probe [20]. In-gel fluores-

cence scanning of FP-labeled proteomes

derived from SKOV-3 cells treated in culture

with AS115 (0–10 mM) revealed selective

inactivation of KIAA1363 (red box). Note

that KIAA1363 migrates by SDS-PAGE as

a 43 and 45 kDa glycosylated doublet,

which, upon treatment with PNGaseF, is

converted into a single 40 kDa protein. This

protein is predominantly found in the mem-

brane fraction of cancer cells (left image).

(C) AS115 inhibited the FP labeling of

KIAA1363 with an IC50 value of 150 nM

(110–200 nM, 95% confidence limits; red

curve), while other serine hydrolases were

not affected by this reagent (IC50 values >

10 mM, representative hydrolases shown in

black curves corresponding to the double-

arrowed proteins in [B]). Results represent

the average values 6 standard error (SE)

for three independent experiments.
potency and selectivity factors are simultaneously
assigned. Previous competitive ABPP screens with a
library of candidate inhibitors and a fluorophosphonate
(FP) activity-based probe that targets the serine hydro-
lase superfamily identified a set of trifluoromethyl ke-
tone (TFMK) inhibitors that showed activity against the
mouse ortholog of KIAA1363 in brain extracts [20].
These TFMK inhibitors also inhibited human KIAA1363
in vitro, but they showed only limited activity in living
cells (data not shown). We postulated that the in situ
activity of KIAA1363 inhibitors could be enhanced by
replacing the reversibly binding TFMK group with
a carbamate, which inactivates serine hydrolases via
a covalent mechanism (Figure S1; see the Supplemental
Data available with this article online). Carbamate
AS115 (Figure 1A) was synthesized and tested for its
effects on the invasive ovarian cancer cell line SKOV-3
by competitive ABPP (Figure 1B). AS115 was found to
potently and selectively inactivate KIAA1363, dis-
playing an IC50 value of 150 nM, while other serine hy-
drolase activities were not affected by this agent (IC50

values > 10 mM) (Figures 1B and 1C). AS115 also
selectively inhibited KIAA1363 in other aggressive can-
cer cell lines that possess high levels of this enzyme,
including the melanoma lines C8161 and MUM-2B
(Figure S2B).
Profiling the Metabolic Effects of KIAA1363

Inactivation in Cancer Cells
We next compared the global metabolite profiles of
SKOV-3 cells treated with AS115 or vehicle (DMSO)
to identify endogenous small molecules regulated by
KIAA1363. These experiments were performed by using
a recently described, untargeted liquid chromatogra-
phy-mass spectrometry (LC-MS) platform for compara-
tive metabolomics [22]. AS115 (10 mM, 4 hr) was found
to cause a dramatic reduction in the levels of a specific
set of lipophilic metabolites (m/z 317, 343, and 345) in
SKOV-3 cells (Figure 2A). These KIAA1363-regulated
metabolites did not correspond to any of the typical lipid
species found in cells, including free fatty acids, phos-
pholipids, ceramides, and monoacylglycerides, none
of which were significantly altered by AS115 treatment
(Table S1). High-resolution MS of the m/z 317 metabolite
provided a molecular formula of C19H40O3 (Figure 2B),
which suggests that this compound might represent
a monoalkylglycerol ether bearing a C16:0 alkyl chain
(C16:0 MAGE). This structure assignment was corrobo-
rated by tandem MS and LC analysis, in which the en-
dogenous m/z 317 product and synthetic C16:0 MAGE
displayed equivalent fragmentation and migration pat-
terns, respectively (Figure S3). By extension, the m/z
343 and 345 metabolites were interpreted to represent
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the C18:1 and C18:0 MAGEs, respectively. Targeted
LC-MS analysis with a 13C-MAGE internal standard
provided estimates of the absolute levels of MAGEs in
SKOV-3 cells, revealing that the C16:0 species was the
most abundant member of this lipid family (Table S2).
MAGE lipids were also significantly reduced in C8161
and MUM-2B melanoma cells after treatment with
AS115 (Figure S4). In contrast, a control carbamate in-
hibitor, URB597, which targets other hydrolytic enzymes
[23], but not KIAA1363, did not affect MAGE levels in
cancer cells (Figure S4).

Biochemical Characterization of KIAA1363
as a 2-Acetyl MAGE Hydrolase

The correlation between KIAA1363 inactivation and re-
duced MAGE levels suggests that these lipids are prod-
ucts of a KIAA1363-catalyzed reaction. A primary route
for the biosynthesis of MAGEs has been proposed to oc-
cur via the enzymatic hydrolysis of their 2-acetyl precur-
sors [24, 25]. This 2-acetyl MAGE hydrolysis activity was
first detected in cancer cell extracts over a decade ago
[25], but, to date, it has eluded molecular characteriza-
tion. To test whether KIAA1363 functions as a 2-acetyl
MAGE hydrolase, this enzyme was transiently trans-

Figure 2. Pharmacological Inhibition of KIAA1363 Reduces Mono-

alkylglycerol Ether, MAGE, Levels in Human Cancer Cells

(A) Global metabolite profiling of AS115-treated SKOV-3 cells (10 mM

AS115, 4 hr) with untargeted LC-MS methods [22] revealed a specific

reduction in a set of structurally related metabolites with m/z values

of 317, 343, and 345 (p < 0.001 for AS115- versus DMSO-treated

SKOV-3 cells). Results represent the average fold change for three

independent experiments. See Table S1 for a more complete list of

metabolite levels.

(B) High-resolution MS analysis of the sodium adduct of the purified

m/z 317 metabolite provided a molecular formula of C19H40O3, which,

in combination with tandem MS and LC analysis (Figure S3), led to

the determination of the structure of this small molecule as C16:0

monoalkylglycerol ether (C16:0 MAGE).
fected into COS7 cells. KIAA1363-transfected cells pos-
sessed significantly higher 2-acetyl MAGE hydrolase
activity compared to mock-transfected cells, and this
elevated activity was blocked by treatment with AS115
(Figure 3A). In contrast, KIAA1363- and mock-trans-
fected cells showed no differences in their respective
hydrolytic activity for 2-oleoyl MAGE, monoacylglycer-
ols, or phospholipids (e.g., platelet-activating factor
[PAF], phosphatidylcholine) (Figure S5A). These data
indicate that KIAA1363 selectively catalyzes the hydro-
lysis of 2-acetyl MAGEs to MAGEs.

Further biochemical studies indicated that KIAA1363
is the principal 2-acetyl MAGE hydrolase in cancer cells.
First, 2-acetyl MAGE hydrolase activity, like that of
KIAA1363, was predominantly associated with SKOV-3
membranes (Figure S5B). Additionally, fractionation of
the SKOV-3 membrane proteome by Q chromatography
revealed a tight relationship between KIAA1363 levels
and 2-acetyl MAGE hydrolase activity (Figure S5C).
Third, SKOV-3 cells possessed much greater 2-acetyl
MAGE hydrolase activity compared to the noninvasive
ovarian cancer line OVCAR-3 (Figure 3B), correlating
well with their respective levels of KIAA1363 (Figure 3C).

KIAA1363 Regulates an Ether Lipid Signaling

Network that Bridges Platelet-Activating
Factor and the Lysophospholipids

Examination of the Kyoto Encyclopedia of Genes and
Genomes (KEGG) database [26] suggests that the
KIAA1363-MAGE pathway might serve as a unique met-
abolic node linking the PAF [27] and lysophospholipid
[28] signaling systems in cancer cells (Figure 4A). To
test this premise, the major components of this small-
molecule network were measured by targeted LC-MS
analysis in AS115- and vehicle-treated SKOV-3 cells.
AS115 was found to reduce the levels of not only
MAGEs, but also alkyl-LPC and alkyl-LPA (Figure 4B).
Consistent with a direct pathway leading from MAGEs
to these lysophospholipids, addition of 13C-MAGE to
SKOV-3 cells resulted in the formation of 13C-labeled
alkyl-LPC and alkyl-LPA (Figure 4C). Conversely, the
levels of 2-acetyl MAGE in SKOV-3 cells, as judged by
metabolic labeling experiments, were significantly sta-
bilized by treatment with AS115, which, in turn, led to
an accumulation of PAF (Figure 4D). Basal levels of 2-
acetyl MAGE and PAF were not significantly altered
by AS115, which may be related to the relatively short
duration of action of this inhibitor or to the regulation
of endogenous levels of these lipids by alternative rate-
limiting enzymatic pathways. Finally, a comparison of
the metabolite profiles of SKOV-3 and OVCAR-3 cells
revealed significantly higher levels of MAGE, alkyl-LPC,
and alkyl-LPA in the former line (Figure 4E). These data
indicate that the lysophospholipid branch of the MAGE
network is elevated in aggressive cancer cells, and that
this metabolic shift is regulated by KIAA1363.

Stable Knockdown of KIAA1363 Impairs

Tumor Growth In Vivo
We next asked whether KIAA1363 contributes to cancer
pathogenesis in vivo. This question could not be directly
addressed by using the KIAA1363 inhibitor AS115
because this agent lacked the pharmacokinetic proper-
ties suitable for long-term treatments in vivo (data not
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Figure 3. KIAA1363 Is a 2-Acetyl MAGE

Hydrolase

(A) COS7 cells transiently transfected with a

KIAA1363 cDNA in the pcDNA3 expression

vector showed significantly greater 2-acetyl

MAGE hydrolase activity compared to

mock-transfected cells (transfected with

empty pcDNA3 vector). Pretreatment with

AS115 (10 mM) blocked the hydrolytic activity

of KIAA1363-transfected cells. **, p < 0.01 for

KIAA1363-transfected cells versus mock-

transfected or AS115-treated cells.

(B and C) (B) The invasive ovarian cancer line

SKOV-3 possessed significantly higher 2-

acetyl MAGE hydrolase activity compared to the noninvasive ovarian cancer line OVCAR-3, which correlated well with the respective levels

of KIAA1363 in these cells, as judged by ABPP ([C], upper panel) or western blotting with anti-KIAA1363 antibodies ([C], lower panel).

**, p < 0.01 for SKOV-3 cells versus OVCAR-3 cells or AS115-treated cells. Results represent the average values 6 SE for 3–6 independent

experiments.
shown). Therefore, we generated a SKOV-3 line in which
the expression of KIAA1363 was selectively and stably
decreased by a short-hairpin RNA (shRNA)-mediated
interference vector (shKIAA1363 cells). An additional
control line (shControl) in which a distinct hydrolytic en-
zyme (dipeptidylpeptidase IV [DPPIV]) was knocked
down by a specific shRNA probe was also generated.
shKIAA1363 cells showed an w75% reduction of this
enzyme compared to control cells (shControl or parental
SKOV-3 cells) (Figure 5A), which correlated with a similar
magnitude decrease in 2-acetyl MAGE hydrolase activ-
ity (Figure 5B) and the levels of MAGE, alkyl-LPC, and
alkyl-LPA lipids (Figure 5C). The levels of other hydro-
lytic enzymes were not affected in shKIAA1363 cells,
as judged by gel-based ABPP (Figure S6).

shKIAA1363 and control SKOV-3 cells were next com-
pared for their tumor growth capacity by subcutaneous
injection into immune-deficient mice. shKIAA1363
SKOV-3 cells exhibited significantly reduced tumor
growth rates compared to either shControl cells or the
parental SKOV-3 line (Figure 6A). shRNA-mediated
knockdown of KIAA1363 was also performed in the ag-
gressive breast cancer line MDA-MB-231, resulting in
lowered MAGE and lysophosopholipid levels in these
cells and impaired tumor growth in vivo (Figure S7).

The decrease in tumorigenic potential of shKIAA1363
cells was not associated with a change in proliferation
potential in vitro (Figure S8). shKIAA1363 cells were,
however, impaired in their in vitro migration capacity
compared to control cells (Figure 6B). To discern whether
any of the lipids regulated by KIAA1363 might contribute
to cancer cell migration, we tested the pharmacological
effects of these compounds on shKIAA1363 cells. Nei-
ther MAGE nor alkyl-LPC impacted cancer cell migration
at concentrations up to 1 mM (Figure 6B). In contrast,
alkyl-LPA (10 nM) completely rescued the reduced mi-
gratory activity of shKIAA1363 cells. Collectively, these
results indicate that KIAA1363 contributes to the patho-
genic properties of cancer cells in vitro and in vivo,
possibly through regulating the levels of the bioactive
lipid LPA.

Discussion

We have determined by integrated enzyme and small-
molecule profiling that KIAA1363, a protein of previously
unknown function, is a 2-acetyl MAGE hydrolase that
serves as a key regulator of a lipid signaling network
that contributes to cancer pathogenesis. Although we
cannot yet conclude which of the specific metabolites
regulated by KIAA1363 supports tumor growth in vivo,
the rescue of the reduced migratory phenotype of
shKIAA1363 cancer cells by LPA is consistent with pre-
vious reports showing that this lipid signals through
a family of G protein-coupled receptors to promote can-
cer cell migration and invasion [28–30]. LPA is also an
established biomarker in ovarian cancer, and the levels
of this metabolite are elevated nearly 10-fold in ascites
fluid and plasma of patients with ovarian cancer [31].
Our results suggest that additional components in the
KIAA1363-ether lipid network, including MAGE, alkyl
LPC, and KIAA1363 itself, might also merit consideration
as potential diagnostic markers for ovarian cancer. Con-
sistent with this premise, our preliminary analyses have
revealed highly elevated levels of KIAA1363 in primary
human ovarian tumors compared to normal ovarian
tissues (data not shown). The heightened expression
of KIAA1363 in several other cancers, including breast
[18, 32], melanoma [18], and pancreatic cancer [33], indi-
cates that alterations in the KIAA1363-ether lipid net-
work may be a conserved feature of tumorigenesis.
Considering further that reductions in KIAA1363 activity
were found to impair tumor growth of both ovarian and
breast cancer cells, it is possible that inhibitors of this
enzyme may prove to be of value for the treatment of
multiple types of cancer.

Looking forward, it is worth discussing the potential
generality of the multidimensional profiling strategy
put forth in this study for the functional annotation of
other uncharacterized enzymes in eukaryotic and pro-
karyotic proteomes. The development of a selective in-
hibitor to perturb KIAA1363 function was predicated
on the availability of an activity-based proteomics probe
for this enzyme. Such probes are now available for many
enzyme classes that participate in cell metabolism,
including all major families of hydrolases [15], [34–39],
glycosidases [40, 41], kinases [42, 43], glutathione S-
transferases [44, 45], and oxidoreductases [45, 46], sug-
gesting that a large swath of the enzyme proteome could
be addressed by following the experimental strategy
presented herein. For enzymes that lack cognate activ-
ity-based probes, RNA interference (RNAi) methods,
coupled with metabolic profiling, may suffice for their
functional annotation. Indeed, if one takes KIAA1363
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Figure 4. KIAA1363 Serves as a Key Enzymatic Node in a Metabolic Network that Connects the PAF and Lysophospholipid Families of

Signaling Lipids

(A) Network diagram showing metabolite and enzyme components (metabolites are shown with a C16:0 alkyl chain for clarity of presentation).

(B) Treatment of SKOV-3 cells with AS115 (10 mM, 4 hr) reduced multiple components of the metabolite network, including MAGE, alkyl-LPC,

and alkyl-LPA. **, p < 0.01 for AS115- (white bars) versus DMSO- (black bars) treated SKOV-3 cells.

(C) Metabolic labeling of SKOV-3 cells with 13C-MAGE (10 mM, 4 hr) shows that this lipid can be directly converted to LPC and LPA. Data are

normalized to show relative MS signals for each lipid and its 13C variant. No accumulation of 13C-2-acetyl MAGE or 13C-PAF was observed after

treatment with 13C-MAGE.

(D) SKOV-3 cells treated with AS115 (white bar; 10 mM AS115, 0.5 hr) exhibited significantly reduced degradation of 13C-2-acetyl MAGE (10 mM,

1 hr) compared to DMSO-treated control cells (black bar). Accumulation of 13C-PAF was also observed in AS115-treated cells. **, p < 0.01 for

AS115- versus DMSO-treated SKOV-3 cells.

(E) MAGE and lysophospholipids (LPC and LPA) are highly elevated in SKOV-3 cells (black bars) compared to OVCAR-3 cells (white bars).

**, p < 0.01 for SKOV-3 versus OVCAR-3 cells. Results represent the average values 6 SE for 3–6 independent experiments.
as a case study, the metabolic effects of perturbing this
enzyme by a small-molecule inhibitor or RNAi proved
complementary. The former approach allowed for visu-
alization of the acute effects of KIAA1363 inactivation,
facilitating the discovery of direct products (MAGEs) of
this enzyme. The constitutive disruption of KIAA1363
function by RNAi produced more dramatic network-
wide changes that impacted not only the direct, but
also downstream, metabolites (e.g., lysophospholipids)
regulated by this enzyme. These findings suggest that
sole reliance on RNAi should enable the discovery of di-
rect products of enzymes in living systems, although the
identification of these molecules may require follow-up
biochemical assays to distinguish them from secondary
metabolites in enzyme-regulated networks.

Independent of the experimental strategy employed
for enzyme inactivation, a primary advantage of metab-
olite profiling in native biological systems is that it
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Figure 5. Metabolic Effects of Stable shRNA-Mediated Knockdown of KIAA1363 in Human Cancer Cells

(A) SKOV-3 cells possessing a stably integrated shRNA specific for KIAA1363 showed an w75% reduction of this enzyme activity compared to

parental SKOV-3 cells or cells possessing a control shRNA that targeted the unrelated serine hydrolase DPPIV (shControl), as judged by ABPP.

The levels of other serine hydrolases were not affected in shKIAA1363 cells (Figure S6).

(B and C) shKIAA1363 SKOV-3 cells displayed significant reductions in (B) 2-acetyl MAGE hydrolase activity and (C) MAGE, alkyl-LPC, and

alkyl-LPA levels compared to control cells. ** p < 0.01, for shKIAA1363 (white bars) versus control cells (parental SKOV-3 [black] or shControl

[gray]). Results represent the average values 6 SE for six independent experiments.
circumvents some of the most laborious and time-con-
suming steps that accompany the in vitro analysis of en-
zymes (i.e., recombinant expression and purification,
candidate substrate screening), and, at the same time,
generates data sets that are more directly related to their
endogenous activities. Expanded systems biology ef-
forts to assemble the full complement of enzymes
encoded by the human genome into metabolic and sig-
naling networks that contribute to complex pathologies,
like cancer, should lead to the discovery of many
new markers and targets for disease diagnosis and
treatment.

Figure 6. KIAA1363 Contributes to Ovarian Tumor Growth and

Cancer Cell Migration

(A) shKIAA1363 SKOV-3 cells showed significantly impaired tumor

growth rates in immune-deficient mice compared to control cells.

**, p < 0.01 for shKIAA1363 versus control cells. n = 7–10 mice

per group.

(B) shKIAA1363 SKOV-3 cells show reduced migration in vitro com-

pared to control cells. The reduced migration of shKIAA1363 cells

is reversed by treatment with C16:0-alkyl-LPA (10 nM), but not

C16:0-MAGE or C16:0-alkyl LPC (each tested from 10 nM to

1 mM; data shown for 100 nM). ** p < 0.01, for shKIAA1363 versus

control cells or shKIAA1363 cells treated with LPA. Results repre-

sent the average values 6 SE for 3–4 independent experiments.
Significance

The complete genome sequences of several eukary-
otic and prokaryotic organisms have revealed a daunt-

ing number of uncharacterized proteins in need of
functional annotation. For enzymes, in particular, the

elucidation of endogenous substrates and products
is imperative for integrating these proteins into the

biochemical networks that govern health and disease.
Here, we present a multidimensional systems biology

strategy that addresses this problem. By combining
activity-based proteomic and metabolomic methods,

we have determined that the uncharacterized integral
membrane enzyme KIAA1363, which is highly elevated

in human cancer, serves as a critical node in an ether
lipid signaling network that links platelet-activating

factor and the lysophospholipids. Disruption of this
small-molecule network through the impairment of

KIAA1363 activity reduced cancer cell migration and
tumor growth in vivo, promoting this enzyme as a po-

tential therapeutic target for the treatment of cancer.
More generally, these results showcase the value of

integrated molecular profiling as an experimental
strategy to annotate uncharacterized enzymes directly

in living systems.

Experimental Procedures

Materials

C17:0 lysophosphatidic acid (LPA), C16:0 2-acetyl MAGE, PAF, and

phosphtidylcholine were purchased from Avanti Lipids. C15:0

monoacylglycerol (MAG) was purchased from Larodan (Sweden).

FP-rhodamine was synthesized by following previously described

procedures [47, 48]. Synthesis of 13C-C16:0 MAGE was carried out

as described previously [49], and targeted acetylation to generate
13C-C16:0 2-acetyl MAGE was performed as reported [50]. The

synthesis of AS115 is detailed in Supplemental Data.

Plasmids

Human KIAA1363 construct was generated by PCR with primers 50-

CGCGGATCCATGAGGTCGTCCTGTGTCCTG-30 and 50-CGGAATT

CTTACAGGTTTTGATCTAGCC-30. PCR products were subcloned

into the pcDNA3.1+ vector (Invitrogen) by using BamHI and EcoRI

restriction sites.

In Situ Inhibition of KIAA1363 in Cancer Cells

The human ovarian cancer cell line were obtained form the National

Cancer Institute’s Developmental Therapeutics Program. The mela-

noma lines C8161 and MUM-2B were obtained from Mary Hendrix.
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Cells were maintained in RPMI medium 1640 with 10% (v/v) fetal calf

serum at 37�C in a humidified atmosphere of 5% CO2/95% air. At

w80% confluency, cells were trypsinized and counted with the aid

of a hemocytometer, and 2.5 3 106 cells were plated in 6 cm dishes.

A total of 20 hr after plating, cells were washed twice with PBS and

supplemented with serum-free RPMI containing 0.5% BSA (Sigma)

(BSA-RPMI) with AS115 (0.01–10 mM) or vehicle (DMSO) at 0.1%.

After incubation for 4 hr, the cells were harvested and analyzed by

ABPP or LC-MS.

ABPP Analysis of Cancer Cell Proteomes

Cells were washed twice and scraped in ice-cold PBS. Cell pellets

were isolated by centrifugation at 1,400 3 g for 3 min and dounce-

homogenized in Tris buffer (50 mM Tris-HCl [pH 8.0]). Membrane

proteomes were isolated by centrifugation at 4�C at 100,000 3 g

to provide a soluble fraction and a particulate fraction (pellet). The

pellet was washed and resuspended in Tris buffer by sonication to

provide a membrane fraction. Proteomes protein concentrations

were determined by a protein assay kit (Bio-Rad), adjusted to a final

concentration of 1 mg/ml in Tris buffer, and treated with 2 mM FP-

rhodamine for 30 min at room temperature (50 ml total reaction vol-

ume). After labeling, a portion of each sample was treated with

PNGaseF (New England Biolabs) to provide deglycosylated pro-

teomes. Reactions were quenched with one volume of standard

23 SDS/PAGE loading buffer (reducing), separated by SDS/PAGE

(10% acrylamide), and visualized in-gel with a Hitachi FMBio IIe flat-

bed fluorescence scanner (MiraiBio). Integrated band intensities

were calculated for the labeled proteins and averaged from three

independent cell samples to determine the level of each enzyme

activity. IC50 values were determined from dose-response curves

from three trials at each inhibitor concentration by using Prism soft-

ware (GraphPad) to obtain values with 95% confidence intervals.

Analysis of Cancer Cell Metabolomes

Cell pellets were harvested by scraping, isolated by centrifugation at

1,400 3 g, and dounce-homogenized in 4 ml of a 2:1:1 mixture of

chloroform:methanol:Tris buffer. Samples that were analyzed by tar-

geted LC-MS were homogenized in the presence of the following

synthetic standards: C15:0 MAG (50 pmol), C17:0 LPA (50 pmol),

and 13C-C16:0 MAGE (25 pmol). Organic and aqueous layers were

separated by centrifugation at 1,260 3 g for 5 min. The organic layer

was then removed, dried under a stream of N2, and resolubilized in

100 ml chloroform, of which 30 ml was analyzed by LC-MS. Extraction

of LPA was performed by acidifying the remaining aqueous layer to

a final concentration of 5% formic acid, followed by the addition of

2 ml chloroform. The mixture was vortexed, and the organic layer

was removed, concentrated to dryness, and dissolved in 100 ml

chloroform, of which 30 ml was analyzed by LC-MS.

LC-MS analysis was performed by using an Agilent 1100 LC-MSD

SL instrument. LC separation was achieved with a Gemini reverse-

phase C18 column (5 mm, 4.6 mm 3 50 mm) from Phenomonex to-

gether with a precolumn (C18, 3.5 mm, 2 mm 3 20 mm). Mobile phase

A was composed of a 95:5 ratio of water:methanol, and mobile

phase B consisted of 2-propanol, methanol, and water in a 60:35:5

ratio. Solvent modifiers such as 0.1% formic acid and 0.1% ammo-

nium hydroxide were used to assist ion formation as well as to im-

prove the LC resolution in both positive and negative ionization

modes, respectively. The flow rate for each run started at 0.1 ml/

min for 5 min, to alleviate backpressure associated with injecting

chloroform. The gradient started at 0% B and increased linearly to

100% B over the course of 40 min with a flow rate of 0.4 ml/min, fol-

lowed by an isocratic gradient of 100% B for 7 min before equilibrat-

ing for 8 min at 0% B with a flow rate of 0.5 ml/min. MS analysis was

performed with an electrospray ionization (ESI) source. The capillary

voltage was set to 3.0 kV, and the fragmentor voltage was set to

100 V. The drying gas temperature was 350�C, the drying gas flow

rate was 10 L/min, and the nebulizer pressure was 35 psi. Untar-

geted data were collected by using a mass range of 200–1000 Da

and were exported as common data format (.CDF) files for com-

putational analysis. Differentially expressed metabolites between

sample pairs were identified by using the XCMS analyte profiling

software (http://metlin/download), which aligns and quantifies the

relative signal intensities of mass peaks from multiple LC-MS traces

[51]. Significant inhibitor-sensitive peak changes were confirmed by
manual quantification by using the area under the peak normalized

to total ion current. Targeted LC-MS measurements were made

by using selected ion monitoring (SIM). Peaks were quantified by

measuring the area under the peak and were normalized to an inter-

nal standard (C15:0 MAG) of endogenous lipid (palmitic acid). Abso-

lute MAGE levels were estimated by comparison to a 13C-MAGE

standard.

Preparative HPLC Purification of C16:0 MAGE

Large-scale preparations of cultured SKOV-3 cells (w4 3 107 cells)

were plated in 10 3 15 cm dishes and incubated in serum-free media

for 48 hr. Cells pellets were isolated as described above and homog-

enized in 8 ml of a 2:1:1 mixture of chloroform:methanol:Tris buffer.

The organic layer was removed, dried under a stream of N2, and

resolubilzed in 200 ml chloroform. The metabolite extracts were LC

purified by using a Hitachi L-7150 HPLC system equipped with a

semipreparative C18 reverse-phase column (5 mm, 10 mm 3 50

mm) from Phenomonex. Mobile phase A was composed of a 95:5 ra-

tio of water:methanol, with 0.1% formic acid, and mobile phase B

consisted of 2-propanol, methanol, and water in a 60:35:5 ratio,

with 0.1% formic acid. The gradient started at 0% B and then in-

creased linearly to 100% B over the course of 60 min, followed by

an isocratic gradient of 100% B for 20 min at a flow rate of 2.5 ml/

min. Fractions, one per minute, were collected by using a Gilson

FC 203B fraction collector. Fractions containing the 317 metabolite

were identified by MS analysis, collected, extracted with chloroform,

and concentrated to dryness, and the residue was then dissolved in

a minimal amount of solvent B (200–300 ml) for exact mass analysis.

Metabolic Labeling of Cells with 13C-2-Acetyl

MAGE and 13C-MAGE

Cells were cultured and maintained as described above. Cells used

for 13C-2-acetyl MAGE experiments were incubated in BSA-RPMI

containing inhibitor or vehicle for 30 min. BSA-RPMI medium was

then removed, supplemented with 10 mM 13C-2-acetyl MAGE or

DMSO, and reapplied to cells. After incubation for 1 hr, the cells

were harvested and metabolomes were analyzed by LC-MS. 13C-

MAGE experiments were conducted by addition of 13C-MAGE or

DMSO containing BSA-RPMI directly after washing with PBS. Cells

were then incubated for 4 hr, harvested, and analyzed by LC-MS.

Fourier Transform Mass Spectrometry, FTMS, Experiments

High-accuracy measurements were performed in the positive ion

mode by using a Bruker (Billerica, MA) APEX III (4.7 T) FTMS instru-

ment equipped with an Apollo electrospray source. The collected LC

fractions were mixed with a collection of small-molecule standards

and directly infused at 3 ml/min by using a Harvard Apparatus (Hol-

liston, MA) syringe pump. Pneumatic assist at a backing pressure

of 60 psi was used along with an optimized flow rate of heated

counter-current drying gas (300�C). Ion accumulation was per-

formed by using SideKick without pulsed gas trapping. Data acqui-

sition times of approximately 1 min were used, yielding a resolving

power of w13,0000 at m/z 446 in broadband in the m/z range of

200–2,200. Calculated molecular masses for ions generated by a

mixture of small-molecule standards were used to internally cali-

brated the data.

Sulfonation of C16:0 MAGE

Endogenous HPLC-purified C16:0 MAGE or synthetic standard

(Sigma) and 1% (w/v) sulfur trioxide in 4:1 dimethylformamide and

pyridine were added to a 4 ml vial with a magnetic stir bar. This

mixture was stirred at 70�C for 2 hr. The reaction mixture was then

concentrated to dryness under a stream of nitrogen, followed by

1 hr under vacuum, and the residue was then dissolved in a minimal

amount of methanol for MS/MS analysis.

Tandem MS Experiments

MS/MS experiments were performed in the negative ion mode by

using a Micromass QTof-Micro(Manchester, UK) instrument equip-

ped with a Z-spray electrospray source and a lockmass sprayer.

The source temperature was set to 110�C with a cone gas flow of

150 l/hr, a desolvation gas temperature of 365�C, and a nebulization

gas flow rate of 350 l/hr. The capillary voltage was set a 3.2 kV,

and the cone voltage was set at 30 V. The collision energy was set

http://metlin/download
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at 15–35 V. Samples were directly infused at 4 ml/min by using a Har-

vard Apparatus syringe pump. MS/MS data were collected in the

centroid mode over a scan range of m/z 70–450 for acquisition times

of 2 min.

Enzyme Activity Assays with Lipid Substrates

Membrane and soluble proteomes were adjusted to 0.25 mg/ml in

Tris buffer and preincubated with AS115 (10 mM) or DMSO for 15

min. Lipid substrates (2-acetyl MAGE, 2-oleoyl MAGE, phosphati-

dylcholine, PAF) were assayed at 100 mM in 100 ml proteome at

room temperature for various amounts of time (5–40 min), after

which reactions were quenched with 200 ml chloroform and 50 ml

methanol. Lipid substrates and products were extracted into the

organic layer, concentrated to dryness, and resolubilized in 300 ml

chloroform prior to LC-MS analysis. MS settings, columns, and

mobile phases were similar to those described above. Hydrolysis

products were quantified by measuring the area under the peak in

comparison to standard curves generated with purified products.

Specific activity was determined during the linear phase of enzy-

matic reactions (i.e., less than 20% product observed). Monoacyl-

glycerol hydrolysis was measured by using a 14C-labeled 2-oleoyl-

glycerol substrate after the conversion to 14C-oleic acid by using a

thin-layer chromatography assay. For enzyme assays performed

with recombinant KIAA1363, COS7 cells were transiently trans-

fected with the human KIAA1363 cDNA in the mammalian expres-

sion vector pcDNA3 by following previously described methods [20].

Q Chromatography Enrichment of KIAA1363

Cell membranes were isolated as described above and solubilized

by rotating for 1 hr at 4�C in Tris buffer containing 1% Triton X-

100. Detergent-insoluble proteins were removed by centrifugation

at 100,000 3 g for 45 min. Triton-solubilized proteomes were ad-

justed to a final protein concentration of 1 mg/ml and subjected

to anion-exchange chromatography in Tris buffer with 0.1% Triton

X-100 on a Q Sepharose HP column (Amersham Pharmacia Biotech)

with a 10 min linear gradient of 0–1 M NaCl at a flow rate of 0.5 ml/

min. Fractions were pooled, tested for 2-acetyl MAGE hydrolytic

activity, and analyzed by FP-rhodamine as described above.

Western Blotting with Anti-KIAA1363 Polyclonal Antibodies

A KIAA1363-GST fusion protein was generated by subcloning hu-

man KIAA1363 into the pGEX4T-3 fusion vector (Amersham Pharma-

cia Biotech) by using BamHI and EcoRI restriction sites. Rabbit poly-

clonal antibodies were raised against KIAA1363-GST fusion protein,

expressed in E. coli BL21 strain according to manufacturer’s recom-

mendations (Amersham Pharmacia Biotech), and administered in

conjunction with RIBI adjuvant (Corixa). Affinity purification of the

anti-KIAA1363 antibodies was conducted by first depleting rabbit

antiserum of GST-crossreactive antibodies, followed by isolation

of KIAA1363-GST reactive antibodies form the remaining serum as

previously described [52].

Preparation of a Xenograft Tumor-Derived SKOV-3 Line

In vivo-derived SKOV-3 lines were established by following previ-

ously described procedures [53]. Briefly, a well-established SKOV-

3 xenograft tumor growing in the mouse flank was removed asepti-

cally and minced with a razor blade; tumor pieces were transferred

into tissue culture flasks with complete medium. After 4 days of cul-

ture, when abundant adherent tumor cells were visible, floating

tumor debris was removed. Attached cells were then expanded to

constitute a propagatable cell population.

RNA Interference Studies in Human Cancer Cell Lines

RNA interference studies were conducted by using a variant of the

SKOV-3 line isolated by in vivo passaging in immune-deficient

mice. This in vivo-derived SKOV-3 line showed enhanced tumor-

forming capacity in vivo compared to the parental line, as has been

reported previously [54]. Short-hairpin RNA constructs were subcl-

oned into the pLP-RetroQ acceptor system, and retrovirus was

generated by using the AmphoPack-293 Cell Line (Clontech). Hairpin

oligonucleotides utilized were: for KIAA1363, 50-TGTGAACACCCC

AATCCTG-30; for DPPIV, 50-GATTCTTCTGGGACTGCTG-30. A

pLP-RetroQ vector was developed for tPa by using a validated oligo-

nucleotide sequence purchased from Clontech. Virus containing
supernatant from 24–72 hr was collected, concentrated by ultracen-

trifugation, and, in the presence of 10 mg/ml polybrene, used to stably

infect SKOV-3 cells for 48 hr. Infection was followed by 3 days of se-

lection in medium containing 1 mg/ml puromycin, as the retroviral

vector contained this selection marker. Infected SKOV-3 cells were

expanded and tested for the loss of enzyme activity by ABPP.

Tumor Xenograft Studies

Human cancer xenografts were established by transplanting cancer

cell lines ectopically into the flank (SKOV-3) or mammary fat pad

(231mfp) of C.B17 SCID mice (Taconic Farms). Briefly, cells were

washed two times with PBS, trypsinized, and resuspended in me-

dium containing serum. Next, the harvested cells were washed

two times with serum-free medium and resuspended at a concentra-

tion of 4.4 3 104 cells/ml (or 1.0 3 104 cells/ml for 231mfp cells), and

100 ml was injected. Growth of the tumors was measured every 3

days with calipers.

Cell Migration Assay

Migration assays were performed in Transwell chambers with 8 mM

pore-sized membranes coated with 10 mg/ml collagen overnight at

4�C (Corning). A total of 24 hr before the start of the migration assay,

cancer cell lines were plated at a concentration of 2.25 3 106 cells

per 10 cm dish. At the start of the migration assay, cells were har-

vested by washing two times with PBS and were then serum starved

in medium containing 0.05% BSA for 4 hr. Serum-starved cells were

trypsinized, spun at 1400 3 g for 3 min, resuspended, and counted.

Cells were diluted to a density of 50,000 cells/ml in medium contain-

ing 0.05% BSA, and then 250 ml was placed in the upper chamber of

the transwells. Either DMSO, C16:0-alkyl-LPA (10 nM), C16:0-alkyl-

LPC (10–1000 nM), or MAGE (10–1000 nM) in medium containing

0.05% BSA was added in the lower chamber, and cells were allowed

to migrate for 18 hr. The filters were then fixed and stained with Diff-

Quik (Dade Behring). Cells that had not migrated through the cham-

ber were removed with a cotton ball. The cells that migrated were

counted at a magnification of 403, and 6 fields were independently

counted from each migration chamber.

Cell Proliferation Assay

Cancer cell lines were plated at a concentration of 6.4 3105, 3.2 3

105, 1.6 3105, and 8 3104 cells per 10 cm dish in triplicate. They

were then counted 2, 4, 6, and 8 days after plating with trypan blue

(Sigma).

Supplemental Data

Supplemental Data include a comparison of the relative metabolite

levels in KIAA1363-inhibited versus control cancer lines, the absolute

level of MAGE lipids in SKOV-3 cells, the competitive ABPP analysis

of AS115, the structural analysis of endogenous and synthetic C16:0

MAGE, the levels of MAGE lipids in KIAA1363-inhibited and control

cancer lines, the activity of KIAA1363 with a panel of lipid substrates,

and the effect of knocking down KIAA1363 levels by shRNA on

the activity of other serine hydrolases. These data are available at

http://www.chembiol.com/cgi/content/full/13/10/1041/DC1/.
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